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ABSTRACT
This paper addresses the evolution of control strategies for a
collective: a set of entities that collectively strives to maxi-
mize a global evaluation function that rates the performance
of the full system. Directly addressing such problems by
having a population of collectives and applying the evolu-
tionary algorithm to that population is appealing, but the
search space is prohibitively large in most cases. Instead,
we focus on evolving control policies for each member of the
collective. The main difficulty with this approach is creat-
ing an evaluation function for each member of the collective
that is both aligned with the global evaluation function and
sensitive to the fitness changes of the member. We show
how to construct evaluation functions in dynamic, noisy and
communication-limited collective environments. On a rover
coordination problem, a control policy evolved using aligned
and member-sensitive evaluations outperforms global evalu-
ation methods by up to 400%. More notably, in the presence
of a larger number of rovers or rovers with noisy and com-
munication limited sensors, the improvements due to the
proposed method become significantly more pronounced.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance

Keywords
Multiagent Systems, Genetic Algorithms, Neural Networks

1. INTRODUCTION
In many continuous control tasks such as pole balancing,

robot navigation and rocket control, using evolutionary com-
putation methods to develop controllers based on neural net-
works has provided successful results [12, 7, 8]. Extending
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those successes to distributed domains such as coordinat-
ing multiple robots, controlling constellations of satellites,
and routing over a data network promises significant appli-
cation opportunities [3, 10, 13]. The goal in such distributed
control tasks is to evolve a “collective”, i.e., a large set of en-
tities that collectively strive to maximize a global evaluation
function [18, 14, 15]. In this paper we focus on a collective
of data gathering rovers whose task is to maximize the ag-
gregate information collected by the full collective. In order
to distinguish the members of the collective from the indi-
viduals in the population of an evolutionary algorithm, we
will use “rovers” exclusively to refer to the members of a
collective through this paper1.

Approaching the design of a collective directly by an evo-
lutionary algorithm (e.g., having a population of collectives
and having the evolutionary operators work directly on the
collective to produce a solution with high global fitness) is
appealing but impractical at best and impossible at worst.
The search space for such an approach is simply too large for
all but the simplest problems. A more promising solution is
to evolve the rovers in the collective by having each of them
use their own fitness evaluation function. The key issue in
such an approach is to ensure that the rover fitness evalu-
ation function possesses the following two properties: (i) it
is aligned with the global evaluation function, ensuring that
the rovers that maximize their own fitness do not hinder one
another and hurt the fitness of the collective; and (ii) it is
sensitive to the fitness of the rover, ensuring that it provides
the right selective pressure on the rover (i.e., it limits the
impact of other rovers in the fitness evaluation function).

A collective-based approach to controlling a multi-rover
system under ideal conditions (static environment, noise-
free sensors, unlimited communication capabilities) was pre-
sented in [3]. In this paper, we extend those results in four
directions:

1. The environment is dynamic, meaning that the con-
ditions under which the rovers evolve changes with
time. The rovers need to evolve general control poli-
cies, rather than specific policies tuned to their current
environment.

2. The rovers’ sensors are noisy, meaning that the sig-
nals they receive from the environment are not reli-
able. The rovers need to demonstrate that the control

1Note, one can have individuals in a population of rovers
or in a population of collectives, depending on where the
evolutionary operators are applied.
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policies are not sensitive to such fluctuations in sensor
readings.

3. The rovers have restrictions on their sensing abilities,
meaning that the information they have access to is
limited. The rovers need to formulate policies that
satisfy the global evaluation function based on limited,
local information.

4. The number of rovers in the system can be larger. The
rovers need to decouple the impact of other rovers from
their fitness functions.

This paper provides methods to evolve control policies in
dynamic, noisy environments for large collectives of rovers
with limited communication capabilities. In Section 2 we
discuss the properties needed in a collective, how to evolve
rovers using evaluation functions possessing such properties
along with a discussion of related work. In section 3 we
present the “Rover Problem” where a planetary rovers in
a collective use neural networks to determine their move-
ments based on a continuous-valued array of sensor inputs.
Section 4 presents the performance of the rover collective
evolved using rover evaluation functions in dynamic, noisy
and communication limited domains. The results show the
the effectiveness of the rovers in gathering information is
400% higher with properly derived rover fitness functions
than in rovers using a global evaluation function. Finally
Section 5 we discuss the implication of these results and
their applicability to different domains.

2. EVOLVING A COLLECTIVE
In general, one has three possible approaches based on

evolutionary computation to design control policies for col-
lectives.

1. One can operate directly on the collective, treating it
as an instance of a solution and operate on populations
of collectives. In this case, the standard evolutionary
algorithms are used to select for the collective that best
satisfies a predetermined global evaluation function.

2. One can operate on members in the collective, treating
each rover as an instance of a solution and operate of
populations of rovers. In this case, the evolutionary
algorithms are used to select the rovers constituting
the collective based on how a given rover satisfies the
predetermined global evaluation function.

3. One can operate on members in the collective, treating
each rover as an instance of a solution and operate of
populations of rovers. In this case, the evolutionary al-
gorithms are used to select the rovers constituting the
collective based on how a given rover satisfies a spe-
cialized rover evaluation function tuned to the fitness
of that rover.

The first method presents a computationally daunting
task in all but the simplest problems. Finding good con-
trol strategies is difficult enough for single controllers, but
the search space become prohibitively large when they are
concatenated into an “individual” representing the full col-
lectives. Even if good rovers are present in the collective,
there is no mechanism for isolating and selecting them when
the collective to which they belong performs poorly. As a

consequence, this approach is practically unworkable in large
continuous domains.

The second method addresses part of the issue: Because
the rovers in the collective are evolved independently, it
avoids the explosion of the state space. However, this method
introduces a new problem: How is a rover’s evolution guided
when the evaluation function depends on the fitness of all the
other rovers? In small collectives, this method provides good
solutions, but as the collectives size increases, this problem
becomes more and more acute. As a consequence, this ap-
proach, though preferable to the first approach in some ways,
is unlikely to provide good solutions in large collectives.

The third method provides a specialized rover evaluation
function for each rover. This approach, cleans up the fitness
signal a rover receives, but introduces a new twist to the
problem: How does one ensure that the specialized rover
evaluation functions are aligned with the global evaluation
function? In other words, the fundamental question is how
to guarantee that the collective evolved using rover evalu-
ation functions will have a high fitness with respect to the
global evaluation function. In this paper we discuss the sec-
ond and third approaches, focusing on how to select rover
evaluation function in a formal manner as discussed below.

2.1 Rover Evaluation Function Properties
Let us now derive effective rover evaluation functions based

on the theory of collectives described in [18]. Let the global
evaluation function be given by G(z), where z is the state
of the full system (e.g., the position of all the rovers in the
system, along with their relevant internal parameters and
the state of the environment). Let the rover evaluation
function for rover i be given by gi(z). First we want the
private evaluation functions of each agent to have high fac-
toredness with respect to G, intuitively meaning that an ac-
tion taken by an agent that improves its private evaluation
function also improves the global evaluation function (i.e.
G and gη are aligned). Formally, the degree of factoredness
between gi and G is given by:

Fgi =

R
z

R
z′ u[(gi(z) − gi(z

′)) (G(z) − G(z′))]dz′dzR
z

R
z′ dz′dz

(1)

where z′ is a state which only differs from z in the state of
rover i, and u[x] is the unit step function, equal to 1 when
x > 0. Intuitively, a high degree of factoredness between gi

and G means that a rover evolved to maximize gi will also
maximize G.

Second, the rover evaluation function must be more sensi-
tive to changes in that rover’s fitness than to changes in the
fitness of other rovers in the collective. Formally we quantify
the rover-sensitivity of evaluation function gi, at z as:

λi,gi(z) = Ez′

»
‖gi(z) − gi(z − zi + z′i)‖
‖gi(z) − gi(z′ − z′i + zi)‖

–
(2)

where Ez′ [·] provides the expected value over possible values
of z′, and (z−zi+z′i) notation specifies the state vector where
the components of rover i have been removed from state z
and replaced by the components of rover i from state z′. So
at a given state z, the higher the rover-sensitivity, the more
gi(z) depends on changes to the state of rover i, i.e., the
better the associated signal-to-noise ratio for i. Intuitively
then, higher rover-sensitivity means there is “cleaner” (e.g.,
less noisy) selective pressure on rover i.
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As an example, consider the case where the rover evalu-
ation function of each rover is set to the global evaluation
function, meaning that each rover is evaluated based on the
fitness of the full collective (e.g., approach 2 discussed in
Section 2). Such a system will be fully factored by the def-
inition of Equation 1. However, the rover fitness functions
will have low rover-sensitivity (the fitness of each rover de-
pends on the fitness of all other rovers).

2.2 Difference Evaluation Functions
Let us now focus on improving the rover-sensitivity of

the evaluation functions. To that end, consider difference
evaluation functions [18], which are of the form:

Di ≡ G(z) − G(z−i + ci) (3)

where z−i contains all the states on which rover i has no
effect, and ci is a fixed vector. In other words, all the com-
ponents of z that are affected by rover i are replaced with the
fixed vector ci. Such difference evaluation functions are fully
factored no matter what the choice of ci, because the second
term does not depend on i’s states [18] (e.g., D and G will
have the same derivative with respect to zi). Furthermore,
they usually have far better rover-sensitivity than does a
global evaluation function, because the second term of D re-
moves some of the effect of other rovers (i.e., noise) from i’s
evaluation function. In many situations it is possible to use
a ci that is equivalent to taking rover i out of the system.
Intuitively this causes the second term of the difference eval-
uation function to evaluate the fitness of the system without
i and therefore D evaluates the rover’s contribution to the
global evaluation.

Though for linear evaluation functions Di simply cancels
out the effect of other rovers in computing rover i’s eval-
uation function, its applicability is not restricted to such
functions. In fact, it can be applied to any linear or non-
linear global utility function. However, its effectiveness is
dependent on the domain and the interaction among the
rover evaluation functions. At best, it fully cancels the ef-
fect of all other rovers. At worst, it reduces to the global
evaluation function, unable to remove any terms (e.g., when
z−i is empty, meaning that rover i effects all states). In most
real world applications, it falls somewhere in between, and
has been successfully used in many domains including rover
coordination, satellite control, data routing, job scheduling
and congestion games [3, 16, 18]. Also note that the compu-
tation of Di is a “virtual” operation in that rover i computes
the impact of its not being in the system. There is no need
to re-evolve the system for each rover to compute its Di, and
computationally it is often easier to compute than the global
evaluation function [16]. Indeed in the problem presented in
this paper, for rover i, Di is easier to compute than G is (see
details in Section 4).

2.3 Related Work
Evolutionary computation has a long history of success

in single agent and multi-agent control problems [17, 9, 6,
2, 1]. Advances in evolutionary computation methods in
single agent domains tend to result from improvements in
search methods. In [9] this is accomplished through fuzzy
rules in a helicopter control problem, while in [17] cellular
encoding is used to improve performance on pole-balancing
control. Similarly [6] addresses planetary rover control by

having genetic algorithms search through a space of plans
generated from a planning algorithm.

Many advances in evolutionary computation for multi-
agent control have been accomplished through the use of
domain specific fitness functions. Ant colony algorithms
[5] solve the coordination problem by utilizing “ant trails”
that provide implicit fitness functions resulting in good per-
formance in path-finding domains. In [2], the algorithm
takes advantage of a large number of agents to speed up
the evolution process in certain domains, but uses greedy
fitness functions that are not generally factored. Also out-
side of evolutionary computation, coordination between a
set of mobile robots has been accomplished through the use
of hand-tailored rewards designed to prevent greedy behav-
ior [11]. While highly successful in many domains all of
these methods differ from the methods used in this paper in
that they lack a general framework for efficient evolution in
multi-agent systems.

3. CONTINUOUS ROVER PROBLEM
In this section, we show how evolutionary computation

with the difference evaluation function can be used effec-
tively in the Rover Problem2. In this problem, there is a
collective of rovers on a two dimensional plane, which is try-
ing to observe points of interests (POIs). Each POI has
a value associated with it and each observation of a POI
yields an observation value inversely related to the distance
the rover is from the POI. In this paper the distance metric
will be the squared Euclidean norm, bounded by a minimum
observation distance, δmin:3

δ(x, y) = min{‖x − y‖2, δ2
min} . (4)

The global evaluation function is given by:

G =
X

t

X
j

Vj

mini δ(Lj , Li,t)
, (5)

where Vj is the value of POI j, Lj is the location of POI j and
Li,t is the location of rover i at time t. Intuitively, while any
rover can observe any POI, as far as the global evaluation
function is concerned, only the closest observation matters4.

3.1 Rover Capabilities
At every time step, the rovers sense the world through

eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants relative to the rover’s
orientation, with two sensors per quadrant (see Figure 1).
For each quadrant, the first sensor returns a function of the
POIs in the quadrant at time t. Specifically the first sensor
for quadrant q returns the sum of the values of the POIs in
its quadrant divided by their squared distance to the rover

2This problem was first presented in [3].
3The square Euclidean norm is appropriate for many natural
phenomenon, such as light and signal attenuation. However
any other type of distance metric could also be used as re-
quired by the problem domain. The minimum distance is
included to prevent singularities when a rover is very close
to a POI.
4Similar evaluation functions could also be made where
there are many different levels of information gain depend-
ing on the position of the rover. For example 3-D imaging
may utilize different images of the same object, taken by
two different rovers.
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Rover Sensor

POI Sensor

Figure 1: Diagram of a Rover’s Sensor Inputs. The
world is broken up into four quadrants relative to
rover’s position. In each quadrant one sensor senses
points of interests, while the other sensor senses
other rovers.

and scaled by the angle between the POI and the center of
the quadrant:

s1,q,j,t =
X
j∈Jq

Vj

δ(Lj , Li,t)

„
1 − |θj,q|

90

«
(6)

where Jq is the set of observable POIs in quadrant q and
|θj,q| is the magnitude of the angle between POI j and the
center of the quadrant. The second sensor returns the sum
of square distances from a rover to all the other rovers in
the quadrant at time t scaled by the angle:

s2,q,i,t =
X

i′∈Nq

1

δ(Li′ , Li,t)

„
1 −

|θi′,q|
90

«
(7)

where Nq is the set of rovers in quadrant q and |θi′,q| is the
magnitude of the angle between rover i′ and the center of
the quadrant.

The sensor space is broken down into four regions to facili-
tate the input-output mapping. There is a trade-off between
the granularity of the regions and the dimensionality of the
input space. In some domains the tradeoffs may be such
that it is preferable to have more or fewer than four sensor
regions. Also, even though this paper assumes that there
are actually two sensors present in each region at all times,
in real problems there may be only two sensors on the rover,
and they do a sensor sweep at 90 degree increments at the
beginning of every time step.

3.2 Rover Control Strategies
With four quadrants and two sensors per quadrant, there

are a total of eight continuous inputs. This eight dimen-
sional sensor vector constitutes the state space for a rover.
At each time step the rover uses its state to compute a two
dimensional output. This output represents the x, y move-
ment relative to the rover’s location and orientation. Fig-
ure 2 displays the orientation of a rover’s output space.

The mapping from rover state to rover output is done
through a Multi Layer Perceptron (MLP), with eight input
units, ten hidden units and two output units 5. The MLP
uses a sigmoid activation function, therefore the outputs are
limited to the range (0, 1). The actual rover motions dx

5Note that other forms of continuous reinforcement learners
could also be used instead of evolutionary neural networks.
However neural networks are ideal for this domain given the
continuous inputs and bounded continuous outputs.

dx

dy

Figure 2: Diagram of a Rover’s Movement. At
each time step the rover has two continuous outputs
(dx, dy) giving the magnitude of the motion in a two
directional plane relative to the rover’s orientation.

and dy, are determined by normalizing and scaling the MLP
output by the maximum distance the rover can move in one
time step. More precisely, we have:

dx = dmax(o1 − 0.5)

dy = dmax(o2 − 0.5)

where dmax is the maximum distance the rover can move in
one time step, o1 is the value of the first output unit, and
o2 is the value of the second output unit.

3.3 Rover Selection
The MLP for a rover is selected using an evolutionary al-

gorithm as highlighted in approaches two and three in Sec-
tion 2. In this case, each rover has a population of MLPs.
At each N time steps (N set to 15 in these experiments), the
rover uses ε-greedy selection (ε = 0.1) to determine which
MLP it will use (e.g., it it selects the best MLP from its pop-
ulation with 90% probability and a random MLP from its
population with 10% probability). The selected MLP is then
mutated by adding a value sampled from the Cauchy Distri-
bution (with scale parameter equal to 0.3) to each weight,
and is used for those N steps. At the end of those N steps,
the MLP’s performance is evaluated by the rover’s evalua-
tion function and re-inserted into its population of MLPs,
at which time, the poorest performing member of the pop-
ulation is deleted. Both the global evaluation for system
performance and rover evaluation for MLP selection is com-
puted using an N-step window, meaning that the rovers only
receive an evaluation after N steps.

While this is not a sophisticated evolutionary algorithm,
it is ideal in this work since our purpose is to demonstrate
the impact of principled evaluation functions selection on
the performance of a collective. Even so, this algorithm has
shown to be effective if the evaluation function used by the
rovers is factored with G and has high rover-sensitivity. We
expect more advanced evolutionary computation algorithms
used in conjunction with these same evaluation functions to
improve the performance of the collective further.

3.4 Evolving Control Strategies in a Collective
The key to success in this approach is to determine the

correct rover evaluation functions. In this work we test three
different evaluation function for rover selection. The first
evaluation function is the global evaluation function (G),
which when implemented results in approach two discussed
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in Section 2:

G =
X

t

X
j

Vj

mini δ(Lj , Li,t)
(8)

The second evaluation function is the “perfectly rover-sensitive”
evaluation function (P):

Pi =
X

t

X
j

Vj

δ(Lj , Li,t)
(9)

The P evaluation function is equivalent to the global eval-
uation function in the single rover problem. In a collective
of rover setting, it has infinite rover-sensitivity (in the way
rover sensitivity is defined in Section 2). This is because the
P evaluation function for a rover is not affected by the states
of the other rovers, and thus the denominator of Equation 2
is zero. However the P evaluation function is not factored.
Intuitively P and G offer opposite benefits, since G is by
definition factored, but has poor rover-sensitivity. The final
evaluation function is the difference evaluation function. It
does not have as high rover-sensitivity as P, but is still fac-
tored like G. For the rover problem, the difference evaluation
function, D, becomes:

Di =
X

t

"X
j

Vj

mini′ δ(Lj , Li′,t)
−

X
j

Vj

mini′ 6=i δ(Lj , Li,t)

#

=
X

t

X
j

Ij,i,t(z)
Vj

δ(Lj , Li,t)

where Ij,i,t(z) is an indicator function, returning one if and
only if rover i is the closest rover to POI j at time t. The
second term of the D is equal to the value of all the informa-
tion collected if rover i were not in the system. Note that for
all time steps where i is not the closest rover to any POI,
the subtraction leaves zero. As mentioned in Section 2.2,
the difference evaluation in this case is easier to compute
as long as rover i knows the position and distance of the
closest rover to each POI it can see. In that regard it re-
quires knowledge about the position of fewer rovers than if it
were to use the global evaluation function. In the simplified
form, this is a very intuitive evaluation function yet it was
generated mechanically from the general form if the differ-
ence evaluation function [18]. In this simplified domain we
could expect a hand-crafted evaluation function to be simi-
lar. However the difference evaluation function can still be
used in more complex domains with a less tractable form of
the global evaluation, even when it is difficult to generate
and evaluate hand-crafted solution. Even in domains where
an intuitive feel is lacking, the difference evaluation function
will be provably factored and rover-sensitive.

In the presence of communication limitations, it is not al-
ways possible for a rover to compute its exact Di, nor is it
possible for it to compute G. In such cases, Di can be com-
pute based on local information with minor modifications,
such as limiting the radius of observing other rovers in the
system. This has the net effect or reducing the factored-
ness of the evaluation function while increasing its rover-
sensitivity.

4. RESULTS
We performed extensive simulation to test the effective-

ness of the different rover evaluation function under a wide

variety of environmental conditions and rover capabilities.
In these experiments, each rover had a population of MLPs
of size 10. The world was 75 units long and 75 units wide.
All of the rovers started the experiment at the center of the
world. Unless otherwise state as in the scaling experiments,
there were 30 rovers in the simulations. The maximum dis-
tance the rovers could move in one direction during a time
step, dmax, was set to 3. The rovers could not move be-
yond the bounds of the world. The minimum observation
distance, δmin, was equal to 5.

Figure 3: Sample POI Placement. Left: Environ-
ment at time = 15. Middle: Environment at time
= 150. Right: Environment at time = 1500.

In these experiments the environment was dynamic, mean-
ing that the POI locations and values changed with time.
There were as many POIs as rovers, and the value of each
POI was set to between three and five using a uniformly
random distribution. In these experiments, each POI dis-
appeared with probability 2.5%, and another one appeared
with the same probability at 15 time step intervals. Be-
cause the experiments were run for 3000 time steps, the
initial and final environments had little similarities. All re-
sults were averaged over at least one hundred independent
trials (except for the seventy agent runs where there were
thirty trials). For each experiment and trial the weights of
the neural network were set to random using the Cauchy
distribution (parameter of 0.5).

Results for episodic environments where the agents were
restored to their initial state at the end of each trial were re-
ported in [3]. In such a case the rovers evolve specific control
policies tuned to the particular environment in which they
are trained. Though useful in domains where the simulated
environment closely matches the environment in which the
rovers will operate, this approach has limited applicability
in general. A more desirable approach is for the rovers to
evolve efficient policies that are solely based on their sensor
inputs and not on the specific configuration of the POIs.
The dynamic environment experiments reported here ex-
plore this premise and provide rover control policies that
can be generalized from one set of POIs to another, regard-
less of how significantly the environment changes. Figures 3
shows an instance of change in the environment throughout
a simulation. The final POI set is not particularly close to
the initial POI set and the rovers are forced to focus on the
sensor input-output mappings rather than focus on regions
in the (x, y) plane.

4.1 Evolution in Noise Free Environment
The first set of experiments tested the performance of the

three evaluation functions in a dynamic noise-free environ-
ment for 30 rovers. Figure 4 shows the performance of each
evaluation function. In all cases, performance is measured
by the same global evaluation function, regardless of the
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evaluation function used to evolve the system. All three
evaluation functions performed adequately in this instance,
though Di outperformed both P and G.
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Figure 4: Performance of a 30-rover collective for
all three evaluation functions in noise-free environ-
ment. Difference evaluation function provides the
best collective performance because it is both fac-
tored and rover-sensitive.

The evolution of this system also demonstrate the differ-
ent properties of the rover evaluation functions. After initial
improvements, the system with the G evaluation function
improves slowly. This is because the G evaluation function
has low rover-sensitivity. Because the fitness of each rover
depends on the state of all other rovers, the noise in the
system overwhelms the evaluation function. P on the other
hand has a different problem: After an initial improvement,
the performance of systems with this evaluation function de-
cline. This is because though P has high rover-selectivity,
it is not fully factored with the global evaluation function.
This means that rovers selected to improve P do not neces-
sarily improve G. D on the other hand is both factored and
has high rover-sensitivity. As a consequence, it continues
to improve well into the simulation as the fitness signal the
rovers receive are not swamped by the states of other rovers
in the system. This simulation highlights the need for having
evaluation function that are both factored with the global
evaluation function and have high rover-sensitivity. Having
one or the other is not sufficient.

4.2 Scaling in Noise-free Environments
The second set of experiments focuses on the scaling prop-

erties of the three evaluation functions in a dynamic noise-
free environment. Figure 5 shows the performance of each
evaluation function at t=3000 for a collective of 10 to 70
rovers (where the number of POIs is equal to the number
of rovers). For each case, the results are qualitatively sim-
ilar to those reported above, except where there are only 5
rovers, in which case P performs as well as G. This is not
surprising since with so few rovers, there are almost no in-
teractions among the rovers, and in as large a space as the
one used here, the 5 rovers act almost independently.

As the size of the collective increases though, an inter-
esting pattern emerges: The performance of both P and G
drop at a faster rate than that of D. Again, this is because
G has low rover-sensitivity and thus the problem becomes
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Figure 5: Scaling properties of the three evaluation
functions. The D evaluation function not only out-
performs the alternatives, but the margin by which
it outperforms them increases as the size of the col-
lective goes up.

more pronounced as the number of rovers increases. Simi-
larly, as the number of rovers increases, P becomes less and
less factored. In fact the performance of rovers using P is
even worse than random when there are many rovers because
the rovers’ greedy actions make them focus on only a few
POIs, while the random rovers at least distribute themselves
among the POIs. D on the other hand handles the increas-
ing number of rovers quite effectively. Because the second
term in Equation 3 removes the impact of other rovers from
rover i, increasing the number of rovers does very little to
limit the effectiveness of this rover evaluation function. This
is a powerful result suggesting that D is well suited to evolve
large collectives in this and similar domains where the in-
teraction among the rovers prevents both G and P from
performing well. This result also supports the intuition ex-
pressed in Section 2 that approach 2 (i.e., evolving rovers
based on the fitness of the full collective) is ill-suited to
evolving collectives in all but the smallest examples.

4.3 Evolution in Noisy Environment
The third set of experiments tested the performance of

the three evaluation functions in a dynamic environment
for 30 rovers with noisy sensors. Figure 6 shows the per-
formance of each evaluation function when both the input
sensors and the output values of the rovers have 5% noise
added. All three evaluation functions handle the noise well.
This result is encouraging in that it shows that not only
simple evaluation functions such as P can handle moderate
amounts of noise in their sensors and outputs, but so can
D. In other words, considering the impact of other rovers
to yield a factored evaluation function does not cause to
compound moderate noise in the system and overwhelm the
rover evaluation.

Figure 7 shows the noise sensitivity of the three different
evaluation functions. The performance is reported as a func-
tion of additive noise to sensors as the percentage shown on
the x-axis (e.g., 0.5 means the magnitude of the added noise
is half that of the sensor value.) The results are shown as the
D is the most sensitive to high levels of noise, though even
at 80% noise it still far outperforms both G and P . This is
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Figure 6: Performance of a 30-rover collective for all
three evaluation functions when the rover sensors
and outputs have 5% noise.

an encouraging result in the power of the D evaluation func-
tion is that it “cleans up” the evaluation function for a rover
(e.g., it has high rover-sensitivity). Adding noise, starts to
cancel this property of D, but even when half the signal be-
ing noise does not prevent D from far outperforming D and
P . Interestingly, rovers using P actually perform marginally
better as noise increases, demonstrating the importance of
factoredness. Adding noise to the system actually hindered
these rovers from learning some counter-productive actions.
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Figure 7: Sensitivity of the three evaluation func-
tions to the degree of noise in their sensors.

4.4 Evolution with Communication Limitations
The fourth set of experiments tested the performance of

the three evaluation functions in a dynamic environment
where not only the rover sensors were noisy, but the rovers
were subject to communication limitations. Figure 8 shows
the performance of all three evaluation function when the
rovers were only aware of other rovers when they were within
a radius of 4 units from their current location. This amounts
to the rovers being able to communicate with only 1% of the
grid. (Because P is not affected by communication restric-
tions, its performance is the same as that of Figure 4.)

The performance of D is almost identical to that of full
communication D. G on the other hand suffers significantly.
The most important observation is that communication lim-
ited G is no longer factored with respect to the global eval-
uation function. Though the rover-sensitivity of G goes up
in this case, the drop in factoredness is more significant and
as a consequence collectives evolved using G cannot handle
the limited communication domain.
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Figure 8: Results for noisy domain under commu-
nication limitations. Rovers can only see of rovers
covering an area of 1% of the domain. Difference
evaluation is superior since it is both factored and
rover-sensitive.

Figure 9 expands on this issue by showing the dependence
of all three evaluation function on the communication radius
for the rovers (P is flat since rovers using P ignore all other
rovers). Using D provides better performance across the
board and the performance of D does not degrade until the
communication radius is dropped to 2 units. This is a se-
vere restriction that practically cuts the rover from other
rovers in the system. G on the other hand needs a rather
large communication radius (over 20) to outperform the col-
lectives evolved using P . This results is significant in that
it shows that D can be effectively used in many practical
information-poor domains where neither G nor “full” D as
given in Equation 3 can be accurately computed.

Another interesting phenomenon appears in the results
shown in Figure 9, where there is a dip in the performance
of the collective when the communication radius is at 10
units for both D and G (the “bowl” is wider for G than
D, but it is the same effect). This phenomenon is caused
by the interaction between the degree of factoredness of the
evaluation functions and their rover-specificity. At the max-
imum communication radius (no limitations) D is highly
factored and has high rover-sensitivity. Reducing the com-
munication radius starts to reduce the factoredness, while
increasing the rover-sensitivity. However, the rate at which
these two properties change is not identical. At a commu-
nication radius of 10, the drop in factoredness has outpaced
the gains in rover-sensitivity and the performance of the col-
lective suffers. When the communication radius drops to 5,
the increase in rover-sensitivity compensates for the drop in
factoredness. This interaction among the rover-sensitivity
and factoredness is domain dependent and has also been
observed in previous application of collectives [13, 15].

597



 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1  10  100

F
in

al
 G

lo
ba

l R
ew

ar
d 

A
ch

ie
ve

d

Communication Radius

D
P
G

(Random)

Figure 9: Sensitivity of the three evaluation func-
tions to the degree of communication limitations.
Difference evaluation is not affected by communica-
tion limitations by as much as global evaluation.

5. DISCUSSION
Extending the success of evolutionary algorithms in con-

tinuous single-controler domains to large, distributed multi-
controller domains has been a challenging endeavor. Un-
fortunately the direct approach of having a population of
collectives and applying the evolutionary algorithm to that
population results in a prohibitively large search space in
most cases. As an alternative, this paper presents a method
for providing rover specific evaluation functions to directly
evolve individual rovers in collective. The fundamental issue
in this approach is in determining the rover specific evalua-
tion functions that are both aligned with the global evalua-
tion function and are as sensitive as possible to changes in
the fitness of each member.

In dynamic, noise-free environments rovers using the dif-
ference evaluation function D, derived from the theory of col-
lectives, were able to achieve high levels of performance be-
cause the evaluation function was both factored and highly
rover-sensitive. These rovers performed better than rovers
using the non-factored perfectly rover-sensitive evaluation
and more than 400% better (over random rovers) than rovers
using the hard to learn global evaluations.

We then extended these results to rovers with noisy sen-
sors, rovers with limited communication capabilities and
larger collectives. In each instance the collectives evolved
using D performed better than alternative and in most cases
(e.g., larger collectives, communication limited rovers) the
gains due to D increase as the conditions worsened. These
results show the power of using factored and rover-sensitive
fitness evaluation functions, which allow evolutionary com-
putation methods to be successfully applied to large dis-
tributed systems in real world applications where communi-
cation among the rovers cannot be maintained or where the
rover sensors cannot be noise-free.
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